Separable d-Permutations and Guillotine Partitions
نویسندگان
چکیده
منابع مشابه
Separable d-Permutations and Guillotine Partitions
We characterize separable multidimensional permutations in terms of forbidden patterns and enumerate them by means of generating function, recursive formula, and explicit formula. We find a connection between multidimensional permutations and guillotine partitions of a box. In particular, a bijection between separable d-dimensional permutations and guillotine partitions of a 2d−1-dimensional bo...
متن کاملCut equivalence of d-dimensional guillotine partitions
A guillotine partition of a d-dimensional axis-aligned box B is a recursive partition of B by axis-aligned hyperplane cuts. The size of a guillotine partition is the number of boxes it contains. Two guillotine partitions are box-equivalent if their boxes satisfy compatible order relations with respect to the axes. (In many works, box-equivalent guillotine partitions are considered identical.) I...
متن کاملOn Optimal Guillotine Partitions Approximating Optimal D-box Partitions
Given a set of n points, P, in E d (the plane when d = 2) that lie inside a d-box (rectangle when d = 2) R, we study the problem of partitioning R into d-boxes by introducing a set of orthogonal hyperplane segments (line segments when d = 2) whose total (d?1)-volume (length when d = 2) is the least possible. In a valid d-box partition, each point in P must be included in at least one partitioni...
متن کاملThe number of guillotine partitions in d dimensions
Guillotine partitions play an important role in many research areas and application domains, e.g., computational geometry, computer graphics, integrated circuit layout, and solid modeling, to mention just a few. In this paper we present an exact summation formula for the number of structurally-different guillotine partitions in d dimensions by n hyperplanes, and then show that it is Θ (( 2d− 1 ...
متن کاملSeparable Partitions
An ordered partition of a set of n points in the d dimensional Euclidean space is called a separable partition if the convex hulls of the parts are pairwise disjoint. For each fixed p and d we determine the maximum possible number rp,d(n) of separable partitions into p parts of n points in real d-space up to a constant factor. Of particular interest are the values rp,d(n) = Θ(nd( p 2)) for ever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Combinatorics
سال: 2010
ISSN: 0218-0006,0219-3094
DOI: 10.1007/s00026-010-0043-8